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1. Introduction

The extreme values of a stochastic process rather than its usual values are
often of paramount interest. In a manufacturing plant, .or example, a typical
concern is the queue length of parts waiting to be processed at a work station.
Small to moderate values of the queue may indicate that the system is operating
successfully and fluctuations in the queue are unimportant. On the other hand,
large queues may call for extraordinary measures such as the allocation of
auxiliary storage space, employee overtime, or rescheduling of production. A
natural question is: What is the probability that the queue will exceed a
specific critical value in a certain time period? Such questions are the focus
of this study. The following paragraphs describe the gist of our results.

Consider an M/ /1 queueing system in which customers arrive at a single
server according to a Poisson process with rate A and the independent identi-
cally distributed service times have a mean u-l. The queue-length
process is positive recurrent, null recurrent, or transient according to
whether the traffic intensity p = A/u is below, equal, or greater than 1,

respectively. Let Mn denote the maximum queue length up to the nth time the

system becomes empty. We say that Mn has the limit distribution F if there

are norming constants an,bn > 0 such that

lim P((M_-a )/b_ < x) = F(x),

n>e

for each continuity point of F. If there are no such F, an’bn’ we say that Mn

does not have a limit distribution.

From the classical extreme value theory, as in Galambos (1978) or Leadbetter

et al. (1983), we have the following results:
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1, then lim P(Mn/n <x) = e X , x> 0.

n-oo -

]

(1.1) 1f o

(1.2) If o < 1, then Mn does not have a limit distribution.

Cohen (1969) proved (1.1) and an analogue for GI/M/1l queues as well.
Related results appear in Iglehart (1972) for GI/G/l queues and in Serfozo
(1986) for birth and death processes. Other insights on extremes of queues
appear in Heathcote (1565) and Heyde (1971). Anderson (1970) observed the
anomaly (1.2) and gave bounds on the distribution of Mn. The result (1.2) is
to the property that if Mn is the maximum of n independent integer-valued ran
variables with distribution F, then Mn does not have a limit distribution whe
[F(m) - F(m-1)]/{1 - F(m-1)] does not converge to 1; see for instance Theorem
of Leadbetter et al. (1983). The results (1.1) and (1.2) say that the maxima
of null recurrent queues have a limit while the maxima of positive recurrent
queues do not. This is the reverse of what one would anticipate.

In this paper, we show that maxima of positive recurrent queues are more
well behaved than (1.2) suggests. The key idea is that by allowing the basic
parameters of the queueing process to vary with n in a certain manner, then t
maxima do indeed have the three limiting distributions shown in (2.1). The
first and third distributions are the classical Frechet and Gumbel extreme-va
distributions, and the other distribution is a new one. We have shown in Ser
(1986), that the maxima of positive recurrent birth and death processes and M
queues also have these limit distributions. The present analysis differs in
it involves subtle arguments dealing with the convergence of integrals of com
valued functions. In Section 2 we discuss M/G/1l queues and in Section 3 we

discuss GI/M/1 queues.
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2. Results for M/G/1 Queues

Property (1.1) encouraged us to investigate the maximum Mn of positive
recurrent M/G/1 queues when the arrival rate A and service distribution G vary
with n such that the traffic intensity is nearly 1. This is the basis of the
following results.

Consider a sequence of positive recurrent M/G/l queues indexed by n = 1,2,.
where the nth process has arrival rate An and service distribution Gn with mean

-1 th : th
un . For the n~ process, let Mn denote the maximum queue length up to the n
time the system becomes empty. With no loss in generality, assume that the
system is empty at time 0. We shall study the convergence in distribution of
(M -a )/b_ as the traffic intensity p := A _/u_ tends to 1. Although, our

n n'n n nn
limiting results are for large Py the limits yield good approximations for the

distribution of Mn for small as well as large on'

We assume that the Laplace transform

lee]
y (2) = J e %4 (),
n n
0
for z complex, is analytic on the region Rez > -;6, where - §A—§; < 0, and that

Yn(x)'* © for real x + -;6' This assumption is equivalent to Yn(x) being finite

in some real interval lxl < € and

z
3

s

-;n = inf {x < 0: Yn(x) < o},
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One consequence is that all moments of Gn exist. We define

r
t v ']

l‘l
rALES S

’

¢ (2) = Yn(xn(l-z)) - 2z, for Rez < 1 + xn/An.

N

4

Lemma 2.2 says that ¢n has exactly one zero on the real interval (1, l+;§/kn)'

x
14

it AL

We let T denote this zero. Let GO be another such distribution with X ¢O
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3¢ and Ty defined similarly. 5
" We will show, under some natural conditions, that if n(rn—l) -+ ¢, then M

. n

} has the limit distribution Fc’ where

]
o

exp(—x_l) when ¢

"

N (2.1) Fo(x)

) F (x) = exp[-c/(e"-1)] x>0, when 0 < c <
i -
.?: Fm(x) = exp(-e x) when ¢ = o,
W In particular, we will show that -
l' [
'.: K
i'g‘ A
& (2.2) lim P((M -a )/b < x) = F (x) xeR, v
KM oo n n n — c
Y n
“ where :
& a " c=0 .
\' n »
L& (2.3) R Y bn - Bn O<cce {
o { ‘
O - - Lo
de o + Bn log n(rn 1) Bn c = ®, .
j: and . }
i‘ £ ]
-" = 1 - ' = . -
< o Bn og[(1 Dn) /¢n(rn) 1 Bn l/logrn :
n ¢
" THEOREM 2.1. Suppose that
», {
\j ¢
A8 = hy
o8 (2.4) ii: Gn(x/ln) Go(x) :?
A p.
for each G, continuity point, r, = 1, lima 4 -, and when n(r_ - 1) + 0
o 0 0 o n n 3
¥ <. ‘w
.E: (2.5) lim (1-pn)/[n(rn-l)(l+€)n] =0 for each € > 0. Ny
1 0o ]
e -
= Then the possible limit distributions for Mn are FC, 0 <c <= The Mn has limit
s
; distribution FC if and only if n(rn-l) =+ ¢, Appropriate norming constants for ) £
h \)
. the convergence (2.2) are given by (2.3). "
L ¥
DY A
Ny :
A
vy
u:. '
o
:;";":.‘ '4‘ VI‘ », "i.f o, V a l‘ LR -.. L "' '.' * --.',~ E Lt ' “ 'y i ‘ - '.‘ ’ ; * ' \ i-‘ s. -\ . ~ N ",; \ “ N .:} bt ‘.:'.': .: . '\. ‘.---.:‘. :~~ ';

sl Mg
0 e e A Y
©oth L T SRR Lot (o X Y Tl L "H‘M (‘\ \‘i’



N 5

b 5
N <
~ )
Lo REMARKS 2.2 (i) The distributions Fc’ 0 < ¢ < = are of distinct type: Fc and FC, Ny

;} are of the same type if and only if c=c'

:i (ii) For any positive recurrent M/G/l queue, without the artificial

1y

n;'

dependence on n, Theorem 2.1 yields the approximation

v

(2.6) P(M _logr - log[(1-0)/¢"'(r)] < x) = exp[-n(r-1)/(e*-1)], x > 0.

There are analogous approximations of the distribution of Mn by F_ and F_ when

0
o n(r-1) is very small or very large. However (2.6) is better since the actual
")
‘E value of n(r-1) appears on the right whereas it doesn't for the FO and F_
;f approximations, which represent degenerate cases. Furthermore, since n(r-1)
:é appears on the right, (2.6) is accurate when r (or p) is not near 1. For the
ié; M/M/1 queue, we found that the difference between the two sides of (2.6) is

below 0.018 when n > 15 and below 0.0l when n > 20 for any p in (0,1).

;: . (iii) Assumption (2.4) says that Gn(°/Kn) converges weakly to GO.
o,
N . A
D
J: This implies that vy _(XA_z) - yv,(z) and ¢ (2) + ¢,(z) uniformly on compact sets.
o n n 0 n 70 ]
W]
\ We use the latter and ry = 1 to ensure that: (a) r =+ 1, and (b) there is an
j}' n > 1 and N such that ¢n(z) for n > N has no zeros on the annulus 1 < |z| <n
-"4 —
< other than at r . Theorem 2.1 is true with (2.4) and r, = 1 replaced by
o conditions (a) and (b).
:j (iv) We use assumption lim o # - along with r_ -+ 1 to ensure that
AN ) n
\ “ + bnx + o, Agsumption (2.5) is only for the degenerate case n(rn-l) + 0.
3y
& . N . .
M These two assumptions are automatically satisfied in natural cases such as those in
& Corollary 2.4, N
:'c ' \
Ef To prove Theorem 2.1, we use the following properties of ¢n; we suppress .
v:ff N
K the n here for convenience.
9 o
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LEMMA 2.3. (i) The function ¢(x), for real x, is strictly convex on the interval

(0, 14+x/X) and
(2.7 d(x) > as x + 1+ x/A.

Furthermore, ¢(x) has exactly two zeros on this interval at 1 and at some r > 1.

(ii) The only zeros of ¢(z) on the circles |z| = 1 and |z| = r are at 1 and r,

respectively, and these zeros are of order 1.

(iii) ¢(z) has no zeros on the annulus 1 < lzl < r.

Proof. (i) The second derivative of ¢(x) exists and is positive, and so ¢

is strictly convex. Statement (2.7) is obvious when x < @, and, when x = ®

it follows by the strict convexity of ¢ and

w
(2.8) lim ¢'(x) = lim J tye™VdG(t) - 1 =
®>14x/ A y
Clearly ¢(1) = 0 and so the strict comvexity and (2.7) ensure that there is
exactly one other zero of ¢ at some point r in the interval (1, 1+x/A). '
(ii) Since Y(A(1-x)) is strictly increasing and convex with fixed points at x = 1
and x = r (the zeros of $(x)), then
YOA(l-x)) < 1 when 0 < x < 1, and
Y(A(1l-x)) < r when 0 <x <r.
Then on the circle |z] = 1, the only zero of ¢ is at 1, since
lo(2)| > [z] - [y(A(1-2))] ’
> 1 - y(A(1-Rez)) > 0 when z # 1 (Rez < 1). '
Similarly, on the circle lz[ = r, the only zero of ¢ is at r, since
[6(z)| > r - Y(A(1-Rez)) > 0 when z # r (Rez < r).
The zeros of ¢ at 1 and r are of order one since ¢'(l) = p-1 < 0, and ¢'(xr) > O by
) strict convexity.
T :
,g!
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(iii) By Rouche's theorem and

l#(z) - 2| = |y(A(1-2))] j_Y(X(l-lzl)) = ¢(|z]) + |z] < |z| when 1l < |z| < r,

we know that ¢(z) and z have the same number of zeros in 1 < |z| < r. Thus ¢

has no zeros there.

Proof of Theorem 2.1. We shall first prove that n(rn—l) + ¢ implies (2.2).

Associated with the nth M/G/1 process, let Fn denote the distribution of the
maximum queue length in one busy period (the period between two successive

entrances to state 0). From Takacs (1965) and Cohen (1969), we know that

(2.9) F(m) =1- (2mi) L J (1-2)z"™ (z)-ldz/(Zni)_lJ 2" (2) tdz,
n l n l n

where C1 is any circle in the z-plane with center at the origin and with radius
less than 1, and the complex integrals are over Cl in the counter-clockwise
direction.

Because the queueing process regenerates each time the system becomes
empty, then Mn is the maximum of n independent random variables with distribu-

tion Fn. Consequently,
n
- < = +
P((Mn an)/bn X) Fn(an bnx)

It is well known that (1 + nn)n -+ erl for any real numbers nn satisfying

nn_ >N where -© < n < ®, Then to prove (2.2), it suffices to show that

-1
X

(2.10) ii: o{l - F (a_+bx)] = c/(e*-1)
-X
e

To this end, consider the integrals in (2.9). We shall express them in

. 1 , X
more convenient form. Choose circles Cn and Cn in the z-plane with centers

e LT e
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__J\.-"\ *ﬁ*vﬁ.‘_’r,’)\w_-




L SAS AL abe A e kg g 2 s Sl gt e 4 — Mo md Rl ek ahe nd o 4 il A

SEOL

*“’ 8
-
N
A at the origin and radii less than 1 and greater than L respectively, such
- that ¢n has no zeros other than 1 and rn on the annulus between Ci and Cn.
“w
‘: This is possible because of the nature of ¢n; see Lemma 2.3. For convenience,
- , 1
.n we temporarily suppress the subscript n on ¢n’ Cn’ Cn’ T On.
From Lemma 2.3, we know that the function z—mo;)(z)“1 has poles of order
¢
) . . . 1
En one at 1 and r and is analytic at all other z in the annulus between C and C.
1
3
ﬁd The residues of this function at these poles are
X -m -1 '
. lim (z-1)z ¢(z2) =1/¢'(1) = -1/(1-p)
"N badt
Y
N -m -1 m
N lim (z-r)z ¢(z) ~ = 1/(r ¢'(r)).
R zor
o Then by the residue theorem for complex integration, it follows that
o - - - - - -1
-i (2.11) (2mi)~t J 2 "0 (2) Laz - (2mi)~t J L2 "2
= C C
- = -1/(1-p) + /("' (r) . )
.:? Similarly,
- - o, - -1 o, -
r (2.12) (2mi) 1 f (1-2)z m(b(z) 1dz - (2mi) J (1-2)z "¢ (z) 1dz
1
V: C C \‘
- = (1-r)/("¢" (1)), R
Wy "
P where the last term is the residue of the integrand of these integrals at r: :
2 .
the residue at 1 is O. 1
,:: Combining (2.9), (2.11), (2.12) and letting m denote the integer p-rt e
. g
L., -
L of a + b _x, we have :j
‘-. n n
™ -1 - -1 .
n[1-F (a +b )] = [n(l-r)/(x ¢'(r)) - n(2mi) [ (1-z)z "$(2) dz] ?
m ¢ -m v
- - gy =1 -1 y
/1-1/(1=p) + ¢ "3'(r) L (271) J z "i(z) dz]. i
C
o, \
N ;
> N
N .
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That is,

(2.13) n[l—Fn(an+bnx)] = (1+6n)/{(£n—1)/[n(rn—l)] + en}

where, returning lhe subscript n to ¢n’rn’pn’cn’

m

._ _n o, _
o= ¢n\rn)/(l o)

S =1 (1-p )[n(r —l)]—l(Z’Ti)_l (1-2z) m“@ ( )_ld
S 0 oy n l z b (2 z

n
C
n
-m
-1 -1 -1
e =2¢ (1-p )[n(r ~1)} "(27i) { z " (2) “dz.
n n n n c n
n
We first note that n(rn - 1) = ¢ implies
b4 c =0
(2.14) lim (z -D/[n(r_-1)] =1 (e*-1)/c 0<Ccw
oo D n
X
e c = ®,
This follows since
2. L= {la_+b x + - a /83
(2.15) , = exp [an bnx 0(1)]log r Jn/ 0
,1 + xn(rn-l) + o(1) ¢ =0
= QX+O(1) 0 c < ™
n(r —l)EX+O(1) c = >
" "'n
For case o = 0, use el = l+u+o(u) as u -~ 0 and (v - l)_llog v>1as v+ 1,
we now show that ;n and Kn converge to 0. Choose n in the interval
(L, 1+§O) such that :0 has no zeros on the annulus 1 < 'z} < n, This is
. possible due to the nature of (.. Since :n(z) = 3,(2) uniformly on compact

sets, there is a positive integer N such that fn(z)‘ for n » N, has no zeros

on 1 - z' < r other than at r Therefore, we can take each Cn, for n > N,

1

|
»

to be the circle with radius 7. letting B] = sup 'n(Z)‘-

z| = ni and




using (2.15) we have

: -1, -1 "y -1
6.1 < g, (1=p )In(r_-1)]7"(2m) f [1-2] fz| "l (2)| dz
|z|=n

nx+0n+0(1)
0(1)Bn(1'°n)/[“(rn'1)”
m
< O(1)B_(1-p )/n ™

Applying Bn - BO < «  agssumption (2.5), and m + ® to these expressions, it
follows that 6n + 0. A similar argument yields en + 0.
Using these limit statements for Lo Gn and € in (2.13) implies (2.10),
which in turn yields (2.2). Thus, we have shown that n(rn-l) + ¢ implies (2.2).
To prove the converse, suppose Mn has the limit distribution FC. Let
n'(rn,-l) be any convergent subsequence of n(rn-l) on the compact set [0,%]
and let c¢' = iim n'(rn.—l). Then, from what we just proved, Mn. has the limit
-»00
distribution FC,. But Mn" as a subsequence of Mn, also has the limit distri-
bution Fc. Then by Khinchine's Theorem (see for instance Theorem 1.2.3 of
Leadbetter et al. (1983)), the distributions Fc' and FC are of the same type.
Consequently c'=c. Thus, any convergent subsequence of n(rn-l) must converge
to ¢, and hence n(rn-l) + ¢. A similar argument shows that Fc’ 0<c < @, are

the only possible limit distributions of Mn’

Two examples of Theorem 2.1 are as follows.

COROLLARY 2.4. The assertions of Theorem 2.1 are true under the single
hypothesis pn + 1 when (i) the service times are constant or (ii) each Cn

is a gamma distribution with scale parameter n, and order k.

Proof. It suffices to verify the hypotheses of Theorem 2.1 for the two cases.

First, suppose the service times are constant. Then Yn(z) = exp(—z/un) and
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¢n(z) = exp[-pn(l—z)]—z for each complex 2z (xn = @), The zero r of ¢n on :

(1,) is given by (rn-l)—llog rn = pn' Assumption (2.4) is satisfied since

pn »+ 1 implies that Yn(knz) exp(—pnz) -+ Yo(z) exp(-z). Clearly r ~r, =1

0

' = - ' -
Now, using ¢n(z) pn[¢n(z) + z} 1 and ¢n(rn) Prfn 1, we can write

an = {1og[(rn—l) log rn] - log[rnlogrn - (rn-l)]}/logrn.

Then by four applications of L'Hospital's rule and r > 1, 1t follows that
a > -1. Also, assumption (2.5) is satisfied, since an application of

L'Hospital's rule gives
2
(1-p )/ (r -1) = [(r -1) - log r 1/(r -1)" ~ 1/2.
Next, assume that Gn is a gamma distribution with Laplace transform

lz)—k, Rez > -x
b n

-n_.

Yn(Z) =1+ n, n

Then ¢ (2) = [1+(P /k)(l—z)]"k -~ 2z, Rez < 1 + nn/kn, and its zero r is one of
n n -
the k+1 solutions of l—rn[l—(kn/nn)(rn—l)]k=0. Assumption (2.4) is satisfied
-1 .-k
= 1 3 = -+ .
since on k)\n/nn + 1 implies that Yn(knz) + Yo(z) (1+k “2z) Clearly

r > Ty and ry=1 since ¢6(l) = po—l = 0, Using

-1
Al - - - ' = l+k -
¢:(2) =p (¢ (2)+2)/[1 + o /k)(1 - 2)] = 1 and ¢ (r) Cafn 1,
we can write
an = {log[(rn—l) - k(l—r-l/k)] - log[k(rl+1/k—r) - (r-1)1}/1og ro-

From five applications'of L'Hopital's rule, it follows that an + ~-1. Finally,

assumption (2.5) 1is satisfied since an application of L'Hospital's rule gives

(1-on)/(rn-1) = [(rn—l) - k(l—rn—l/k)] / (rn-l)2 + (1+1/k)/2.
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3. Results for GI/M/1 Queues

In this section, we show that the limiting behavior of extreme values
of GI/M/1 queues is analagous to that for M/G/1 queues. Consider a sequence
of positive recurrent GI/M/1 queueing systems indexed by n # 1,2,... For the
nth system, let Gn denote the distribution of the times between arrivals and
let u;I denote the mean of the exponential service times. Assuming the
system is empty at time 0, let Mn denote the maximum queue length up to the
nth time the system becomes empty.

Suppose that the Laplace transform Yn(z) of Gn has the same form as in
Section 2, and let

wn(z) = Yn(un(l - 2)) -~z for Rez < 1 + xn/un.

An easy check shows that wn has the same properties as ¢n in Lemma 2.2 with
My in place of An and r, and 1 reversed. In particular, wn(x) has exactly two
zeros on (0, 1+§g/un) at 1 and at some r <1, and wn(z) has no zeros in the
annulus r < |z] < 1.

For the following result, we use the notation in (2.2) and (2.3) with

n(rn—l) replaced by n(l-on) and

(3.1) a = Bnlog[—(l—on)/w;(rn)] B, = -1/1log r -

THEOREM 3.1. Suppose Gn(-/un) converges weakly to Gy with ry = 1, and lim o, # o,
n-roo

Then the possible limit distributions for Mn are Fc’ 0 < ¢ < ©, The Mn has limit

distribution FC if and only if n(l—pn)+c. Appropriate norming constants for

the convergence (2.2) are given by (2.3) and (3.1).

Proof. This follows by a proof paralleling that of Theorem 2.1. Here the

maximum queue length in a busy cycle has the distribution

‘ l" 3 Rp \ "1-? "
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. ~-m -1
| (3.2) 1-F (m) = 2w1/[ z ¢ (z) dz m=0,1,...,

. n n
C
where C is a circle in the z-plane with center at the origin an. r 1ius less

- than r i see Cohen (1969). Choose circles Ci and Cn in the z-plane with
centers at the origin and radii less than r and greater than 1, respectively,
such that wn(z) has no zeros other than r and 1 on the annulus between Ci

and Cn' Then by the residue theorem

(zni)‘lf 2™ () laz - (Zni)_IJ 2™ (@) Mz = gt 7 4 T )7

¢t c”
n

Using this, (3.2) and w;(l)_1=p;1—1, we have

(3.3) all - F_(a+b 0] = {(¢_-p )/[n(l-p )] + &},
where

m
n '
: (L-p ) /0! (x )

= -r
n n

-1 - -1
€ = (2min) [ z nw (z) “dz
n n
C
n
and m is the integer part of an+bnx. Arguing as in the proof of Theorem 2.1,
one can show that n(l—pn) + ¢ implies (2.10) and hence (2.2). The rest of the

proof is the same as before.

REMARKS 3.2. Analogues of Remarks 2.2 and Corollary 2.4 apply to Theorem 3.1.
Note that since (3.3) is simpler than (2.13), Theorem 3.1 does not need an

assumption like (2.5).
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